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Abstract— Detailed performance assessment of space-time coding algo-
rithms in realistic channels is critically dependent upon accurate knowl-
edge of the wireless channel spatial characteristics. This paper presents an
experimental measurement platform capable of providing the narrowband
channel transfer matrix for wireless communications scenarios. The system
is used to directly measure key multiple-input multiple-output (MIMO) pa-
rameters in an indoor environment at 2.45 GHz. Linear antenna arrays
of different sizes and construction with up to 10 elements at transmit and
receive are utilized in the measurement campaign. This data is analyzed
to reveal channel properties such as transfer matrix element statistical dis-
tributions and temporal and spatial correlation. Additionally, the impact
of parameters such as antenna element polarization, directivity, and array
size on channel capacity are highlighted. The paper concludes with a dis-
cussion of the relationship between multipath richness and path loss as well
as their joint role in determining channel capacity.
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I. I NTRODUCTION

THE increasing demand for capacity in wireless systems has
motivated considerable research aimed at achieving higher

throughput on a given bandwidth. One important finding of
this activity is the recent demonstration that for an environment
sufficiently rich in multipath components, the wireless chan-
nel capacity can be increased using multiple antennas on both
transmit and receive sides of the link [1]–[5]. For example, re-
cent research results have demonstrated data rates as high as 40
bits/s/Hz in an indoor environment [6]. Algorithms that achieve
this increased capacity actuallyexploit the multipath structure
by cleverly coding the data in both time and space. There-
fore, in order to assess the performance of systems that imple-
ment these algorithms, we must gain an improved understand-
ing of the complexspatial behavior of wireless multiple-input
multiple-output (MIMO) channels [7].

Past methods for characterizing multipath MIMO channels
include approximate statistical analyses [1] and ray tracing pro-
cedures [8]. These solutions offer information concerning the
general channel behavior but suffer from their inability to ac-
commodate an adequately detailed representation of the propa-
gation environment. More recently, experimental measurement
campaigns have been initiated in order to statistically character-
ize both indoor and outdoor wireless MIMO channels [9]–[11].
Results from these experiments have provided considerable in-
sight concerning the capacity increases possible using MIMO
systems.

In this work, we report the development of and results from
an experimental platform designed to probe the transfer matrix
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for indoor MIMO channels. This system is used to obtain nar-
rowband channel transfer matrix data at 2.45 GHz using two
different linear arrays: one with 4 dual-polarization elements
and one with 10 single polarization elements. The key aspects
of the hardware system are presented, including a discussion of
measurement issues and data processing methodologies. Rep-
resentative data obtained with the instrument in several indoor
environments are also provided, with emphasis placed on key
parameters such as channel stationarity, transfer matrix element
statistics, and channel spatial correlation. Additionally, the pa-
per highlights the effect of such factors as antenna element po-
larization and directivity on the capacity, and illustrates the de-
crease in capacity per antenna that occurs as the array size in-
creases. Finally, a discussion is provided concerning the rela-
tionship between multipath richness and path loss as well as
their joint role in determining channel capacity.

II. M EASUREMENTSYSTEM

Experimental probing of the MIMO wireless channel involves
measuring the transfer matrixH, where the elementHmn(ω)
represents the frequency dependent transfer function between
the nth transmitter andmth receiver antennas. The experi-
mental platform, depicted in Figure 1, uses a custom narrow-
band MIMO communications system operating with a center
frequency between 0.8 and 6 GHz [12]. For this work, a center
frequency of 2.45 GHz has been chosen. The system operates
by transmittingN uniquely-coded and co-channel binary phase
shift keyed (BPSK) signals fromN distinct antennas. The re-
ceiver downconverts the signal from each of theM antennas and
stores the resulting sequences on a PC for post-processing. The
system can accommodate up toN = 16 transmit andM = 16
receive antenna elements although only 10 channels are used in
this study. A calibration procedure is applied before data collec-
tion to remove the effects of unequal channel gains and phases
in the transmitter and receiver hardware. The calibration coeffi-
cients obtained are applied during the data post-processing.

A. Transmitter

The transmit system consists of a custom radio frequency
(RF) subsystem that accepts binary sequences from an external
digital pattern generator and a local oscillator (LO) signal from
a tunable microwave source. The subsystem distributes these
signals to 16 individual cards, each of which amplifies the LO
signal and multiplies it with one of the binary sequences to pro-
duce BPSK modulation. The resulting signal is amplified to 0.5
W and fed to one of theN transmit antennas. The pseudoran-
dom binary sequences used in the system are constructed using



a shift-generator initialized with a maximum-length sequence
polynomial. The resulting codes have good correlation proper-
ties but are not perfectly orthogonal, necessitating the channel
inversion technique discussed in Section III-C.

B. Receiver

The receive system consists of a second RF subsystem that
accepts a LO signal from a microwave source. Each of 16 re-
ceive cards amplifies, downconverts, and filters the signal from
one of theM receive antennas. The resulting intermediate fre-
quency (IF) signals are sampled on a 16-channel 1.25 Msam-
ple/s analog-to-digital (A/D) conversion card for storage on the
PC. This data is then post-processed according to the procedures
outlined below.

III. D ATA PROCESSING

The raw data collected using the measurement platform is
processed to obtain estimates of the time-variant channel matrix.
The technique consists of 3 basic steps: (1) code synchroniza-
tion, (2) carrier recovery, and (3) channel estimation.

A. Code Synchronization

Locating the start of the modulating codes begins by corre-
lating the signal from one of theM receive antennas with a
baseband representation of one of the transmit codes. A Fast
Fourier Transform (FFT) of this result produces a peak at the
IF when the known code and the code in the receive signal are
aligned. The algorithm expedites the process by using shortened
correlating codes and coarse steps at the beginning of the search
process, and adaptively reducing the step size and switching to
full-length codes as the search converges. Additionally, if the
signal carrying the specified code is weak, the maximum corre-
lation may not occur at code alignment. To overcome this, our
procedure searches over every combination of receive channel
and code to ensure accurate code synchronization.

B. Carrier Recovery

The FFT peak obtained during code synchronization provides
an estimate of the IF. This result is refined using a subplex op-
timization loop that maximizes the magnitude of the Discrete
Time Fourier Transform (DTFT) of the despread signal (known
aligned code multiplied by the receive signal). Following fre-
quency estimation, the phase variation is recovered by moving
a window along the despread signal and correlating this wave-
form against a complex sinusoid at the IF, as shown in Figure 2.
The phase of this result represents the phase at the center of the
recovery window. An averaging window is then used to smooth
this phase estimate.

C. Channel Estimation

Because the pseudorandom codes used in the probing sys-
tem are not strictly orthogonal, it is necessary to perform an in-
version to extract the complex channel transfer matrix from the
measured data. This inversion is formulated by first recognizing
that the IF signal on themth receive channel is composed ofN
BPSK codes, with each code represented by an amplitudeAmn

and phaseφmn. If pn[k] represents thekth sample of thenth

code, the discrete received signal is given as

ym[k] =
N∑

n=1

Amnpn[k] cos(Ω1k + φk + φmn) + η[k] (1)

whereΩ1 is the discrete (recovered) carrier frequency,φk is the
randomly varying carrier phase, andη[k] represents the discrete
noise sample that is assumed to be spectrally white with a zero-
mean Gaussian amplitude distribution.

To construct channel matrices, we must infer channel param-
etersAmn andφmn from the sequenceym[k]. To this end, con-
sider forming an estimate of these parameters based uponK =
k2− k1 + 1 samples of the sequence (corresponding to the code
length). Also assume that̂ym[k] is the observed signal. Using
the zero-mean Gaussian distribution of the noise, the maximum
likelihood estimation (MLE) of the channel parameters results
from finding the values of̃Amn = Amnejφmn = AR

mn + jAI
mn

that minimize the expression

Tm =
k2∑

k=k1

{ŷm[k]− µmk}2 (2)

where

µmk =
N∑

n=1

{
AR

mn cos(Ω1k + φk)−

AI
mn sin(Ω1k + φk)

}
pn[k]. (3)

In order to determine the MLE values of̃Amn, we take the
derivative ofTm with respect to bothAR

m` andAI
m`, 1 ≤ ` ≤ N ,

and set the result to zero. Performing this operation produces the
equations

2
k2∑

k=k1

ŷm[k]p`[k] cos(Ω1k + φk)

=
k2∑

k=k1

N∑
n=1

pn[k]p`[k]
{
AR

mn(1 + αk)−AI
mnβk

}
(4)

2
k2∑

k=k1

ŷm[k]p`[k] sin(Ω1k + φk)

=
k2∑

k=k1

N∑
n=1

pn[k]p`[k]
{
AI

mn(1− αk)−AR
mnβk

}
(5)

where1 ≤ m ≤ M , 1 ≤ ` ≤ N , αk = cos[2(Ω1k + φk)] and
βk = sin[2(Ω1k + φk)]. These equations can now be formed
into the block matrix equation

[
D

R

m

D
I

m

]
=

[
B11,m B12,m

B21,m B22,m

] [
A

R

m

A
I

m

]
. (6)

The channel matrix elements are given byHmn = Ãmn.

IV. CHANNEL MATRIX CHARACTERISTICS

The measurement system was deployed on the fourth-floor
of the five-story engineering building on the Brigham Young
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University campus. This building, constructed with cinder-
block partition walls and steel-reinforced concrete structural
walls contains classrooms, laboratories, and several small of-
fices. Data were collected at a center frequency of 2.45 GHz
using 1000-bit binary codes at a chip rate of 12.5 kbps, yield-
ing a nominal bandwidth of 25 kHz. This narrow bandwidth
is clearly not representative of most modern communications
systems, and therefore additional work is required to fully char-
acterize the frequency behavior of the MIMO channel matrix.
However, the results obtained can be used to assess the channel
spatial behavior and temporal variation as well as the effect of
antenna characteristics on the achievable channel capacity.

The 12.5 kbps chip rate produces one channel matrix estimate
every 80 ms, where the estimate represents the average channel
response over the code length. Because channel changes occur
on the time scales of relatively slow physical motion (people
moving, doors closing, etc.), this sample interval is adequate for
the indoor environment under investigation (see Section IV-B
for a discussion of channel temporal variation). Shorter codes
could be used to reduce this time if necessary. Alternatively,
a higher speed data acquisition system could be employed in
conjunction with a higher chip rate to decrease the time between
channel estimates.

Table I lists the five different locations for the transmit and
receive subsystems used in this study. Rooms 400 and 484 are
central labs in the building separated by a hallway (designated as
“Hall”). “5 rooms” and “Many Rooms” in the table indicate that
the receiver was placed at several locations in different rooms.
The specific linear antenna arrays employed were 4 element sin-
gle polarization patches withλ/2 spacing (4SP), 2 element dual
polarization (V/H) patches withλ/2 spacing (2DP), and 10 ele-
ment monopole antennas withλ/4 spacing (10SP). Data records
were each 10-s long.

Since the actual received power varies as a function of the
transmit and receive locations, some type of channel normaliza-
tion is required to facilitate comparison of the results. One rea-
sonable normalization is to scale the channel matrices such that
on average, the power transfer between a single transmit and
single receive antenna is unity. To see this, letĤ(k) andH(k)

represent the observed and normalized matrices, respectively,
where the superscript denotes the index of the matrix sample in
time. UsingA to represent a normalization constant such that
H(k) = AĤ(k), the unity average power gain constraint may be
expressed as

1
KMN

K∑

k=1

M∑
m=1

N∑
n=1

|AĤ(k)
mn|2 = 1 (7)

whereK is the total number of matrix samples. Solving this
equation forA leads to

A =

(
1

KMN

K∑

k=1

M∑
m=1

N∑
n=1

|Ĥ(k)
mn|2

)− 1
2

. (8)

If the K matrix samples include the entire data set under con-
sideration, this scaling allows assessment of the effects of path
loss on the channel characteristics. If, on the other hand,K = 1

is used, each individual matrix will produce the same signal-
to-noise ratio (SNR). This is useful when assessing the impact
of antenna parameters such as polarization, directivity, or array
size on capacity. In this paper, therefore, data is normalized us-
ing K = 1 unless specifically stated in the discussion.

Finally, it is important to assess the dynamic range of the re-
ceiver system. To accomplish this, the carrier modulated with
a single code was directly injected into each receive channel
and the channel estimation procedure was applied. The car-
rier power was varied linearly until saturation occurred at high
power and until the carrier estimation procedure failed at low
power. Figure 3 shows the response from one of the channels
(all channels were within±1dB of each other). This plot also
contains a histogram of the received power level for all measure-
ments used in this work. These results imply that the effective
SNR for most measurements is above 40dB and never falls be-
low 20dB. It is important to point out that error in the carrier
recovery introduces about 1% error, producing an upper bound
of 40dB on the effective channel SNR. This high SNR level im-
plies that the statistical channel properties will be minimally in-
fluenced by the noise.

A. Channel Matrix Element Statistics

We begin this study by presenting the marginal probability
density functions (PDF) for the magnitude and phase of the el-
ements ofH. These empirical PDFs are computed according
to

pmag[x] =
1

KMN∆x
HIST
K,M,N

(|H(k)
mn|, ∆x) (9)

ppha[x] =
1

KMN∆x
HIST
K,M,N

(6 H(k)
mn,∆x) (10)

whereHIST(f, ∆x) represents a histogram of the functionf
with bins of size∆x andK is the number ofH matrix samples.
In this case histograms are computed by treating each combina-
tion of matrix sample, transmit antenna, and receive antenna as
an observation.

Figures 4 and 5 show the empirical PDFs for sets 4×4(a)
and 10×10(a) respectively. These results are compared with the
Rayleigh distribution (magnitude) with parameterσ2 = 0.5 and
the uniform distribution (phase) on[−π, π]. The agreement
between the analytical and empirical PDFs is excellent. The im-
proved fit for 10×10 data arises from more records and antennas
available.

B. Channel Temporal Correlation

Because the indoor channel is subject to temporal drift due to
motion of people, doors, etc., it is interesting to explore the time
scales over which these changes occur. This study can be ac-
complished by examining the temporal autocorrelation function
for each element of the transfer matrix. The average autocorre-
lation is given as

X` = 〈Hmn[k]H∗
mn[k + `]〉 (11)

wherek is a time sample,̀ is a sample shift, and< ·> repre-
sents an average over all combinations of transmit antenna, re-
ceive antenna, and starting time sample. This averaging includes
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all 10-second records for the data set under investigation. The
temporal correlation coefficient is then given byρ` = X`/X0.

Figure 6 plots the magnitude ofρ` over a period of 5 sec-
onds for each of the data sets considered. We observe that for
all measurements, the correlation remains relatively high. This
is significant, as it provides insight into the required frequency
of training events for MIMO algorithms that use channel state
information. We also note that the temporal correlation seems
to exhibit an exponential decay to a “resting” value, suggesting
that the mean of the channel elements remains relatively con-
stant over the 5-s interval. This behavior is reasonable, since
channel disturbances tend to be temporary, causing the chan-
nel transfer function to oscillate about a constant value. Over
longer periods of time, the correlation will likely decrease more
substantially due to more permanent changes in the channel.

The variation inρ` for the different data sets considered is
directly related to the measurement conditions. For example,
the 10×10(a) and 4×4(a) data sets were taken during periods
of very low activity and the data sets were large, resulting in
good statistical averages. In contrast, sets 10×10(c) and 4×4(b)
were both taken during the middle of the day when activity was
higher. Nearly half of the measurements in the 10×10(b) data
set involved continuous movement of the receiver or transmitter
during acquisition, producing the more rapid decrease in corre-
lation values.

C. Channel Spatial Correlation

The channel spatial correlation is an important physical
mechanism since lower signal correlation between adjacent an-
tennas tends to produce higher average channel capacity. To
examine the channel spatial behavior, we assume a correlation
function that is separable in transmit and receive, or

R(m,n; i, j) = E[HmnH∗
ij ] = RR(m, i)RT (n, j) (12)

where the transmit and receive correlation functions are given
by

RT (n, j) =
1
M

M∑
m=1

E[HmnH∗
mj ] (13)

RR(m, i) =
1
N

N∑
n=1

E[HmnH∗
in] (14)

andE[·] is an expectation. The transmit and receive correlation
functions are computed empirically by replacing the expectation
with an average over all time samples.

Figure 7 shows the shift-invariant spatial transmit and re-
ceive correlation coefficient compared with Jakes’ model [13]
whereRR(i, j) = RT (i, j) = J0(2π|i − j|∆zλ) and∆zλ is
the antenna separation in wavelengths. Data sets 4×4(a) and
10×10(a) were used for this example. For this shift-invariant
case, we treat all pairs of antennas with the same spacing as
independent observations. For small separation, the agreement
between the experimental correlation and Jakes’ model is very
good. The disparity at higher separations is likely due to non-
uniform angle of arrival of multipath components as well as a
reduced amount of available data for computing the correlation
statistics.

The correlation values obtained from this analysis represent
the temporal cross correlation function at zero time offset. We
have computed the full temporal cross correlation function for
the data collected here using an analysis similar to that of Sec-
tion IV-B. Comparing this result to the average temporalauto-
correlationfunction of Eq. (11) scaled by the spatial correlation
value shown in Figure 7 for the appropriate antenna separation
shows that the two functions are always within 5% and usually
within 1%. This observation suggests that Figures 6 and 7 com-
pletely specify the average correlation behavior of the data.

V. CHANNEL CAPACITY

The channel statistical properties are interesting as they lend
insight into mechanisms for exploiting the increased capacity of
the environment using MIMO architectures. Ultimately, how-
ever, channel capacity, or the upper bound on achievable data
rates for the channel, is the key parameter of interest. In this
study, capacities are computed from the measuredH matrices
according to the water filling solution of the channel orthogo-
nalized by the singular value decomposition (SVD) [5], [14].
This formulation yields the absolute upper bound on channel
capacity which can be expressed as

C =
q∑

i=1

log2

(
1 + Q̃iiλi

)
(15)

Q̃ii =


1

q


PT

σ2
+

q∑

j=1

1
λj


− 1

λi




+

(16)

where [z]+ = max(0, z) andλi is the squared magnitude of
the ith singular value ofH when these singular values are se-
quenced in descending order.PT is the total transmit power,
and σ2 represents the single receiver noise variance (additive
white Gaussian noise is assumed). The integerq represents the
number of non-zero values of̃Qii. Sinceq appears in the expres-
sion of Eq. (16),Q̃ii must be repeatedly computed forq = 1 to
min(M,N). The value ofq used in the capacity computation
is then the largest value ofq such that allQ̃ii > 0, 1 ≤ i ≤ q.
It is important to recognize that due to the normalization given
in Section IV,PT /σ2 represents the single-input single-output
(SISO) SNR, which is held at 20dB for all capacity computa-
tions that follow. Also, capacity is given in the standard units
of bits per channel use (bits/use) [14] which can be interpreted
here as bits/s/Hz.

A. Polarization Dependence

The linear patch arrays employed in the measurements consist
of four dual-polarization elements. In order to assess the role of
polarization in the performance of MIMO architectures, we used
four transmit/receive channels (set 4×4(b)) to excite both V and
H feeds on twoλ/2 separated patches on each side of the link.
By looking at the appropriate submatrices ofH, the complimen-
tary cumulative distribution functions (CCDFs) of capacity can
be compared for three different 2×2 sub-channels: (1) 2 ele-
ments with same polarization (V or H) but separated byλ/2,
(2) 2 elements which have orthogonal polarization and are colo-
cated, and (3) 2 elements which have both orthogonal polariza-
tion and are separated byλ/2.
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Figure 8 shows the results of this study. Two single polar-
ization elements (SP) is the inferior case, due to correlation be-
tween the elements. The next line on the graph (IID) is the ca-
pacity for a 2×2 channel matrix with independent identically
distributed (i.i.d.) complex Gaussian elements with unit vari-
ance, the capacity being computed using Monte Carlo over106

channel realizations. The capacities for the dual polarized ele-
ments (DP) and dual polarized elements with separation (DPS)
are virtually identical. The fact that the dual polarized elements
outperform the IID case seems extraordinary at first glance.
However, it is a well-known phenomenon that coupling between
the orthogonal polarizations will be small, presenting anH ma-
trix which is nearly diagonal. The final line (DIAG) shows the
performance whenH has i.i.d. complex Gaussian elements on
the diagonal but is identically zero everywhere else (computed
in a manner similar to IID). As expected, this case outperforms
our dual-polarization elements which exhibit weak correlation.

The channel matrix normalization applied in Figure 8 ensures
that each 2×2 sub-channel has the same SISO SNR. This type of
normalization is perhaps optimistic, since low transmission be-
tween the orthogonally polarized channels will translate into re-
duced average receive SNR. A more realistic comparison takes
each 4×4 channel matrix and normalizes to achieve an average
SISO SNR of 20 dB over the co-polarized matrix elements only.
The 2×2 sub-channels are then formedafter this normalization,
preserving the relative receive power of the sub-channels. Fig-
ure 9 depicts the CCDFs resulting from measured data and from
Monte Carlo simulations of two ideal cases. In the simulations,
4×4 channel matrices are generated having i.i.d. complex Gaus-
sian co-polarized elements, with the cross-polarized elements
set to zero. The new normalization is applied to the simulated
channels, and 2×2 single-polarization (sSP) and dual polariza-
tion (sDP) sub-channels are formed.

The conclusions drawn from Figure 9 are quite different from
those drawn from Figure 8. First, we note that the slopes in
the new plot are more gradual because the power in the sub-
channels has higher variance (only the entire 4×4 matrix is con-
strained). Second, in the simulations sSP clearly outperforms
sDP due to the advantage in receive SNR. For the measured data,
however, the spatially separated elements have nonzero cou-
pling, and the increased capacity due to nearly orthogonal chan-
nels offsets the degradation from reduced receive SNR. Thus,
for compact arrays of closely spaced elements, dual-polarization
is an attractive choice. However, when wide separation is pos-
sible, spatially separated elements are more attractive due to the
power advantage.

B. Directivity Dependence

The monopole antennas employed radiate uniformly in the
plane perpendicular to the antennas. The patch antennas, on
the other hand, only radiate into a half space. These two types
of antennas allow examination of the effect of antenna direc-
tivity on channel capacity. Figure 10 plots the capacity of the
4×4 channel for four patch antennas (transmit and receive) from
set 4×4(a) and for four monopole antennas using subsets of set
10×10(a). These results indicate that the omnidirectional an-
tennas slightly outperform the more directive patch antennas.
This result may be somewhat misleading due to the normaliza-

tion of H. It is reasonable that since the monopoles are omnidi-
rectional, they receive more multipath components, resulting in
higher capacity. However, the reduced multipath richness in the
directional case is potentially offset by the improved SNR result-
ing from the increased antenna gain, allowing a higher data rate
than in the omnidirectional case. This second effect is ignored
since theH matrices are normalized to a specified SISO SNR.
The similarity of the CCDFs suggests that even though the patch
antennas exhibit reduced angular field of view, the multipath is
nearly as rich as the omnidirectional case for a small number of
antennas.

C. Dependence on Number of Antennas

Naturally, it is not anticipated that the capacity will continue
to grow indefinitely as more antenna elements are added. To
explore this behavior, we examine the dependence of capacity
on the number of antennas for 2, 4, and 10 monopole trans-
mit and receive antennas. To make a fair comparison, each ar-
ray in the study possesses the same total length (2.25λ). This
study uses the data from set 10×10(a). Figure 11 shows the
capacity CCDFs per number of transmit and receive antennas.
Also, Monte Carlo simulations were performed to obtain capac-
ity CCDFs for channel matrices having i.i.d. complex Gaussian
elements with unit variance. These results indicate an excellent
agreement between the measured 2×2 and ideal 2×2 (indepen-
dent Gaussian) channel due to the very wide separation of the
antennas (2.25λ). The ideal case predicts that the capacity per
antenna should approach a constant as the number of antennas
becomes large. Measurement shows, however, that as we pack
more antennas into our array, the capacity per antenna drops,
due to higher correlation between adjacent elements.

D. Path Loss Dependence

Studies on the capacity of the MIMO channel often focus on
the gains due to multipath interference and ignore the reduc-
tion in SNR due to path loss. In a hypothetical indoor wireless
MIMO system, as separation between transmit and receive in-
creases, capacity increases due to increased channel complexity
(multipath). However, path loss also increases, leading to lower
SNR and therefore reduced capacity. This interesting tradeoff
deserves some attention [11].

To highlight the importance of path loss, a study was per-
formed with several transmit and receive scenarios as depicted
in Figure 12. The transmit and receive arrays are the same linear
monopole arrays withλ/4 element separation as mentioned be-
fore. A total of 7 transmit/receive locations were possible, and
H for several combinations was probed. Each arrow in the figure
represents a single scenario with the arrow pointing from trans-
mit location to receive location. The top number in the box on
each arrow gives the channel capacity using the standard single
H matrix normalization (K = 1 in Eq. (8)) for 20dB SNR. The
second number (in italics) gives the capacity when the normal-
ization is applied overall H matrices in the study for an average
SISO SNR of 20dB. This second value includes the capacity
degradation due to path loss.

Several of the cases with large separation (5 → 3, for ex-
ample) exhibit a high capacity when path loss excluded (due to
large multipath), but suffer greatly when this loss is included.
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Other cases where transmit and receive are in closer proximity
(7 → 4 most notably) exhibit the opposite effect due to the high
SNR observed. These results demonstrate the importance of in-
cluding both path loss and multipath richness when comparing
the performance of different channels.

VI. CONCLUSION

Wireless communication systems employing multiple trans-
mit and receive antennas have potentially greater capacity than
their single antenna counterparts on the same bandwidth. Un-
derstanding the gains that are possible with such systems re-
quires detailed knowledge of the MIMO channel transfer matrix.
This paper has presented narrowband MIMO measurements of
the indoor channel at 2.45 GHz for arrays with up to 10 antenna
elements. Details of the required hardware and data processing
were outlined along with representative data. The measured data
were presented so as to allow assessment of the channel statis-
tical behavior including transfer matrix PDFs and temporal and
spatial correlation. Additionally, the impact of polarization, di-
rectivity, and number of array elements on channel capacity has
been demonstrated. Finally, the importance of including both
path loss and multipath richness when comparing capacity of
different wireless channels has been illustrated. These results
should provide invaluable insight into the behavior of MIMO
wireless channels.
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Table Captions

Table I: Measurement system locations within the engineering building along with antenna configurations.



Figure Captions

Figure 1: High level system diagram of the narrowband wireless MIMO measurement system.

Figure 2: Algorithm for recovering the carrier phase.

Figure 3: Plot illustrating the power dynamic range of the receiver system and histogram of the received power level for all
measurements used in this analysis.

Figure 4: Empirical PDFs for the magnitude and phase of the 4×4 H matrix elements compared with Rayleigh and uniform
PDFs, respectively.

Figure 5: Empirical PDFs for the magnitude and phase of the 10×10 H matrix elements compared with Rayleigh and
uniform PDFs, respectively.

Figure 6: Temporal correlation coefficient over a 5 second interval for all data sets.

Figure 7: Magnitude of the shift-invariant spatial correlation coefficients at transmit and receive compared with Jakes’ model.

Figure 8: CCDFs for 2×2 channels employing different types of polarization/spatial separation.

Figure 9: CCDFs for 2×2 channels employing different types of polarization/spatial separation with realistic normalization.

Figure 10: Capacity CCDFs for 4×4 patches versus 4×4 monopoles.

Figure 11: Capacity CCDFs per number of antennas for transmit/receive arrays of increasing number of elements. The array
length is 2.25λ for all cases.

Figure 12: Study showing the tradeoff between multipath and path-loss with regard to channel capacity. Arrows are drawn
from transmit to receive. The top number and bottom number in each box give capacity without and with path loss,
respectively.



TABLE I

MEASUREMENT SYSTEM LOCATIONS WITHIN THE ENGINEERING BUILDING ALONG WITH ANTENNA CONFIGURATIONS.

Name Xmit Loc Recv Loc Ant Records
4×4(a) RM484 5 Rooms 4SP 233
4×4(b) Hall RM400 2DP 165
10×10(a) Hall RM400 10SP 474
10×10(b) RM484 RM400 10SP 137
10×10(c) Many Rooms Many Rooms 10SP 120
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Fig. 1. High level system diagram of the narrowband wireless MIMO measurement system.
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Fig. 3. Plot illustrating the power dynamic range of the receiver system and histogram of the received power level for all measurements used in this analysis.
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Fig. 6. Temporal correlation coefficient over a 5 second interval for all data sets.



C
or

re
la

tio
n 

C
oe

ffi
ci

en
t M

ag
.

Antenna Spacing (Wavelengths)
0 0.5 1 1.5 2 2.5

1

0.8

0.6

0.4

0.2

0

Jake’s Model

Transmit Correlation (4x4)

Receive Correlation (4x4)

Transmit Correlation (10x10)

Receive Correlation (10x10)

Fig. 7. Magnitude of the shift-invariant spatial correlation coefficients at transmit and receive compared with Jakes’ model.



DP
IID

DPS

SP

DIAG

Single Pol Elements

Dual Pol Elements
Dual Pol Separated Elements
Ideal Gaussian IID Diagonal

Ideal Gaussian IID

Capacity (bits/use)

P
(c

ap
 >

 a
bs

ci
ss

a)

KEY

DP
DPS

IID
SP

DIAG

1

0

0.2

0.4

0.6

0.8

8 9 10 11 12 13 14

Fig. 8. CCDFs for 2×2 channels employing different types of polarization/spatial separation.



sDP
sSP

sSP

sDP

Capacity (bits/use)

P
(c

ap
 >

 a
bs

ci
ss

a)

Key

SP

DP

DPS

Dual-pol

Dual-pol separated

Single-pol IID complex Gaussian

Dual-pol IID complex Gaussian

Single-pol

SP

DPS

DP

0

0.2

0.4

0.6

0.8

1

4 6 10 12 14 168

Fig. 9. CCDFs for 2×2 channels employing different types of polarization/spatial separation with realistic normalization.



4x4 Patch

P
(c

ap
 >

 a
bs

ci
ss

a)

4x4 Monopole

SNR=20dB

Capacity (bits/use)
16 18 20 22 24

0

0.2

0.4

0.6

0.8

1

Fig. 10. Capacity CCDFs for 4×4 patches versus 4×4 monopoles.



Capacity (bits/use/ch)

P
(c

ap
 >

 a
bs

ci
ss

a)

3 3.5 4 4.5 5 5.5 6 6.5 7

10x10 Gaussian
10x10 Measured

4x4 Gaussian

2x2 Gaussian
2x2 Measured

4x4 Measured

1

0.8

0.6

0.2

0

0.4

Fig. 11. Capacity CCDFs per number of antennas for transmit/receive arrays of increasing number of elements. The array length is 2.25λ for all cases.



4

6 5

3

7

2

1

32.1

39.8

35.4

38.1

37.6

39.0

36.4

39.9

36.4

37.9
41.1

34.8

28.6

37.0
33.8

17.0

51.0

44.1

37.2

34.8

15.6

12.7

13.4

41.4

40.5

33.1

Fig. 12. Study showing the tradeoff between multipath and path-loss with regard to channel capacity. Arrows are drawn from transmit to receive. The top number
and bottom number in each box give capacity without and with path loss, respectively.


